跳转至

Chap 1

约 719 个字 4 张图片 预计阅读时间 2 分钟

Logic and Proofs

Logical Equivalences

Equivalences Name
\(p \land T\equiv p\)
\(p \lor F \equiv p\) Identity laws
\(p \lor T \equiv T\)
\(p \land F \equiv p\) Domination laws
\(p \land p \equiv p\)
\(p \lor p \equiv p\) Idempotent laws
\(\lnot \lnot p \equiv p\) Double negation laws
\(p \land q \equiv q \land p\)
\(p \lor q \equiv q \lor p\) Commutative laws
\((p \land q) \land r \equiv p \land (q \land r)\)
\((p \lor q) \lor r \equiv p \lor (q \lor r)\) Associative laws
\(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)\)
\(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)\) Distributive laws
\(\lnot (p \land q) \equiv \lnot p \lor \lnot q\)
\(\lnot (p \lor q) \equiv \lnot p \land \lnot q\) De Morgan’s laws
\(p \lor (p \land q) \equiv p\)
\(p \land (p \lor q) \equiv p\) Absorption laws
\(p \lor \lnot p \equiv T\)
\(p \land \lnot p \equiv F\) Negation laws
\(p \rightarrow q \equiv \lnot p \lor q\) Implication laws
\(p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)\) Equivalence laws

Examples:

no queen can be placed in the same row or column or on the same diagonal.
We first note that \(\lor _{j=1}^{n}p(i,j)\) asserts that row i contains at least one queen,and
\(Q_1=\land_{i=1}^{n} \lor_{j=1}^{n}p(i,j)\)
asserts that every row contains at least one queen.

\(Q_2=\land_{i=1}^{n} \land_{j=1}^{n-1}\land_{k=j+1}^{n}(\lnot p(i,j)\lor \lnot p(k,j))\)
asserts that there is at most one queen in each row.

\(Q_3=\land_{j=1}^{n} \land_{i=1}^{n-1}\land_{k=i+1}^{n}(\lnot p(i,j)\lor \lnot p(k,j))\)
asserts that there is at most one queen in each column.

\(Q_4=\land_{i=2}^{n} \land_{j=1}^{n-1}\land_{k=1}^{min(i-1,n-j)}(\lnot p(i,j)\lor \lnot p(i-k,j+k))\)

\(Q_5=\land_{i=1}^{n-1} \land_{j=1}^{n-1}\land_{k=1}^{min(n-i,n-j)}(\lnot p(i,j)\lor \lnot p(i+k,j+k))\)
assert that no diagonal contains two queens.
\(Q=Q_1\land Q_2 \land Q_3 \land Q_4 \land Q_5\)

We assert every row contains every number:
\(\land_{i=1}^{9} \land_{n=1}^{9} \lor _{j=1}^{9} p(i,j,n)\)

We assert every column contains every number:
\(\land_{j=1}^{9} \land_{n=1}^{9} \lor _{i=1}^{9} p(i,j,n)\)

We assert that each of the nine 3 \(\times\) 3 blocks contains every numnber:
\(\land_{r=0}^{2} \land _{s=0}^{2} \land_{n=1}^{9} \lor_{i=1}^{3} \lor _{j=1}^{3} p(i+3r,j+3s,n)\)

no cells have more than one number:
\(p(i,j,n)→p(i,j,n’)\)

Predicates and Quantifiers

Original Equivalences
\(\lnot \exists xP(x)\) \(\forall x \lnot P(x)\)
\(\lnot \forall xP(x)\) \(\exists x \lnot P(x)\)

Attention

  • to tell the difference

  • All CS students are smart students

    • \(\forall x (C(x)→S(x))\)
  • Some CS students are smart students
    • \(\exists x(C(x)\land S(x))\)

Untitled

Untitled

Nested Quantifiers

  • From these observations, it follows that if \(∃y∀xP(x, y)\) is true, then \(∀x∃yP(x, y)\) must also be true. However, if \(∀x∃yP(x,y)\) is true, it is not necessary for \(∃y∀xP(x,y)\) to be true

Untitled

Norm formals

DNF

  • Full Disjunctive Normal forms = Sum of minterms
  • minterm: conjunctions of each single variable
  • every variable is presented exactly once in a minterm

Untitled

CNF

  • product of maxterms

  • application: 1.determine equivalence 2.determine tautology ,contradiction or contingency

prenex normal form :

  • \(Q_1x_1Q_2x_2···Q_nx_nB\) , where \(Q_i(i=1,···n)\) is quantifiers \(\forall\) or \(\exists\) and the predicate \(B\) is quantifier free

how to transform into prenex normal form

  1. eliminate \(→\) and \(\leftrightarrow\)
  2. rename the variables

Rules of Inference

  1. Modus ponens
\[ p, \\ p→q, \\ \therefore q \]
  1. Modus tollens
\[ \lnot q, \\ p→q, \\ \therefore \lnot p \]
  1. Hypothetical Syllogism
\[ p\rightarrow q, \\ q→r, \\ \therefore p \rightarrow r \]
  1. Disjunctive Syllogism
\[p \lor q, \\ \lnot p, \\ \therefore q \]
  1. Addition
\[p, \\ \therefore p \lor q \]
  1. Simplifcation
\[p\land q, \\ \therefore p \]
  1. Conjunction
\[p, \\ q, \\ \therefore p\land q \]
  1. Resolution
\[ p\lor q, \\ \lnot p \land r, \\ \therefore q\lor r \]